Formelsammlung zur Flächenberechnung

	Eigenschaften	Umfang U	Flächeninhalt A	Abgeleitete Formeln	
Quadrat	 Alle Seiten sind gleichlang. Alle Winkel sind 90°. Die Diagonalen stehen senkrecht aufeinander, sind gleich lang und halbieren sich. 	$U = 4 \cdot a$	$A = a \cdot a = a^2$	$a = \frac{U}{4}$	$a = \sqrt{A}$
Rechteck	 Gegenüberliegende Seiten sind gleichlang und parallel. Alle Winkel sind 90°. Die Diagonalen sind gleich lang und halbieren sich. 	$U = 2 \cdot a + 2 \cdot b$ $U = 2 \cdot (a + b)$	$A = a \cdot b$	$a = \frac{U}{2} - b$ $b = \frac{U}{2} - 4$	$a = \frac{A}{b}$ $b = \frac{A}{a}$
Dreieck	- Die Summe der Innenwinkel beträgt 180°.	U = a + b + c	$A = \frac{a \cdot h_a}{2}$ $A = \frac{b \cdot h_b}{2}$ $A = \frac{c \cdot h_c}{2}$	a = U - b - c $b = U - a - c$ $c = U - a - b$	$a = \frac{2 \cdot A}{h_a}, b = \frac{2 \cdot A}{h_b}, c = \frac{2 \cdot A}{h_c}$ $h_a = \frac{2 \cdot A}{a}, h_b = \frac{2 \cdot A}{b}, h_c = \frac{2 \cdot A}{c}$
Parallelogramm	 Gegenüberliegende Seiten sind gleichlang und parallel. Gegenüberliegende Winkel sind gleich groß. Die Diagonalen halbieren sich. 	$U = 2 \cdot a + 2 \cdot b$ $U = 2 \cdot (a+b)$	$A = a \cdot h_a$ $A = b \cdot h_b$	$a = \frac{U}{2} - b$ $b = \frac{U}{2} - 4$	$a = \frac{A}{h_a}, b = \frac{A}{h_b}$ $h_a = \frac{A}{a}, h_b = \frac{A}{b}$

Trapez	- Grund- und Decklinien sind parallel.	U = a + b + c + d	$A = \frac{a+c}{a+c}$. h	a = U - b - c - d	$h = 2 \cdot A$
			$A = \frac{1}{2}$	a = U - b - c - d $b = U - a - c - d$	$n-\frac{a+c}{a+c}$
				$\begin{vmatrix} c = U - a - b - d \\ d = U - a - b - c \end{vmatrix}$	$a = \frac{2 \cdot A}{1 - C}$
				d = U - a - b - c	h
					$c = \frac{2 \cdot A}{h} - a$
Raute	- Alle Seiten sind gleichlang.	$U = 4 \cdot a$	$A = a \cdot h_a$	$a = \frac{U}{I}$	$a = \frac{A}{A}$
	 Gegenüberliegende Winkel sind gleich groß. 			$a-\frac{a}{4}$	$u = \frac{1}{h_a}$
	Die Diagonalen halbieren sich, sind				$h_a = \frac{A}{a}$
	gleichlang und stehen senkrecht				$n_a = \frac{1}{a}$
	aufeinander.				
Drachen	- Die benachbarten Seiten sind gleichlang.	$U = 2 \cdot a + 2 \cdot b$	$A = \frac{e \cdot f}{2}$	U_{-1}	2· A
	 Gegenüberliegende Winkel sind gleich groß. 	$=2\cdot(a+b)$	$A = \frac{1}{2}$	$a = \frac{U}{2} - b$	$e = \frac{f}{f}$
	- Die Diagonalen stehen senkrecht			$b = \frac{U}{4} - 4$	$c 2 \cdot A$
\bigvee	aufeinander.			$b=\frac{1}{2}$	$J \equiv \frac{1}{e}$
Kreis	- Alle Punkte auf der Kreislinie haben	$U = 2 \cdot \boldsymbol{p} \cdot r$	$A = \boldsymbol{p} \cdot r^2$	$d = \frac{U}{}$	\overline{A}
	vom Mittelpunkt M den gleichen Abstand.	$U = \boldsymbol{p} \cdot d$	$A = \mathbf{p} \cdot r^2$ $A = \mathbf{p} \cdot \frac{d^2}{4}$	$a - \frac{\overline{\boldsymbol{p}}}{\boldsymbol{p}}$	$r = \sqrt{\frac{\mathbf{p}}{\mathbf{p}}}$
	- Der Abstand vom Mittelpunkt M zur		$A = \boldsymbol{p} \cdot \frac{}{4}$	$r = \frac{\boldsymbol{p}}{2 \cdot \boldsymbol{p}}$	$\sqrt{4\cdot A}$
	Kreislinie ist der Radius Der Abstand von einem Punkt der			2 · p	$d = \sqrt{\frac{4 \cdot A}{\mathbf{p}}}$
	Kreislinie durch den Mittelpunkt M zum				•
	gegenüberliegenden Punkt der Kreislinie				
	ist der Durchmesser d.				

Längen- und Flächeneinheiten

Satz des Pythagoras

$$mm \xrightarrow{\cdot 10} cm \xrightarrow{\cdot 10} dm \xrightarrow{\cdot 10} m \xrightarrow{\cdot 1000} km$$

$$c^2 = a^2 + b^2$$

$$mm^2 \xrightarrow{\cdot 100} cm^2 \xrightarrow{\cdot 100} dm^2 \xrightarrow{\cdot 100} m^2 \xrightarrow{\cdot 100} a \xrightarrow{\cdot 100} ha \xrightarrow{\cdot 100} km^2$$